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Introduction
• Multiple Kernel Learning(MKL)
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• Advantage of MKL

 a) learn optimal kernel and parameter from data
automatically

 b) combining data from different sources

Introduction

MKL doesn’t put all eggs in the same basket



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

Introduction
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Kernel
• Review of SVM

Linearly separable data distribution
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Kernel
• Review of SVM

Not linearly separable data distribution
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Kernel
• Review of SVM

Discriminant function:

SVM can be trained by solving the quadratic optimization problem: 
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Kernel
• Review of SVM

Lagrangian dual function:

Rewrite discriminant function: 
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Kernel
• Positive-definite Kernel
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Kernel
• Example of p.d. Kernels
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Kernel
• Reproducing Kernel Hilbert Spaces(RKHS)

Notation：

� is a set

� is a Hilbert space of functions � : �⟶ℝ

� � �⟶ℝ �

�

� � �⟶ℝ

(∙, ∙)� : � x �⟶ℝ , the corresponding inner product on �

ex : �⟶ℝ is evaluation functional, ex(f) = f(x) for any x ∊ �
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Kernel

p.d.
kernel

RKHS
kernel

RKHS

connection
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Kernel
• Reproducing Kernel Hilbert Spaces

p.d.
kernel

RKHS

一一对应
（Theorem 1）

唯一确定
（Theorem 2） reproducing

kernel

This means p.d. kernels can be constructed from inner products

reproducing
property

拥有性质
拥有性质
（传递性）
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Kernel
• Feature Map

Notation：

� is a Hilbert space, called feature space

φ : �⟶� is called a feature map

� � �⟶ℝ �

�

�⟶�

(∙, ∙)�: � x �⟶ℝ the corresponding inner product on �
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Part 3 Multiple Kernel Learning 
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MKL overview
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MKL overview
• Three Types of Integrating Data

 early combination 

 intermediate combination (combine kernel)

 late combination 
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MKL overview
• Key Properties of MKL

 Learning method

 Functional form

 Target function

 Training method

 Base learner

 Computational complexity
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MKL overview
• Learning Method 

 Fixed rules

functions without any parameters and do not need any training

e.g.  
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MKL overview
• Learning Method 

 Heuristic approaches

select the kernel weights by looking at the performance values 
obtained by each kernel separately 

e.g.  e.g.  

accuracy obtained 
using only Km threshold
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MKL overview
• Learning Method 

 Optimization approaches

learn the parameters by solving an optimization problem 

e.g. optimize separately
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MKL overview
• Learning Method 

 Optimization approaches

learn the parameters by solving an optimization problem 

e.g. optimize jointly
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MKL overview
• Learning Method 

 Bayesian approaches

Interpret combination parameter as random variables, put priors
on parameters

e.g. e.g. 

η is modeled with a Dirichlet prior 

α is modeled with a zero-mean Gaussian with an inverse gamma 
variance prior 
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MKL overview
• Learning Method 

 Boosting approaches

Iteratively a add new kernel until the performance stops
improving
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MKL overview
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MKL overview
• Function form

 Linear combination

advantage of conic and convex sums

1) easy to extract important kernel

2) interpret feature representation (if nonnegative) 



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

MKL overview
• Function form

 Linear combination

Lp-norm restriction is also applicable

e.g. L1-norm promotes sparsity on the kernel level, which can be 
interpreted as feature selection interpreted as feature selection 

L2-norm usually prevent overfiting
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MKL overview
• Function form

 Nonlinear combination

Combine kernel by multiplication, power, and exponentiation…
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MKL overview
• Function form

 Data-dependent combination

assign specific kernel weights for each data instance
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MKL overview
• Target function

 Similarity-based functions

maximize the similarity between the combined kernel matrix and 
an optimum kernel matrix 

e.g.e.g.
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MKL overview
• Target function

 Structural risk functions

minimize the sum of a regularization term and  error term  

e.g.

L1-norm, L2-norm or Lp-norm are used on the kernel weights or 
feature spaces 
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MKL overview
• Target function

 Bayesian functions 

measure the quality of the resulting kernel function constructed 
from candidate kernels using a Bayesian formulation 

likelihood or posterior are usually used as the target function likelihood or posterior are usually used as the target function 
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MKL overview
• Target function

 Training method 

1) One-step method

2) Two-step method 
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MKL overview
• Base learner

 SVM(SVR) 

 kernel Fisher discriminant analysis (KFDA) 

 regularized kernel discriminant analysis (RKDA) 

 kernel ridge regression (KRR) 

 Multinomial probit and Gaussian process (GP) 
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MKL overview
• Computational complexity 

 One-step methods using fixed rules and heuristics generally 
do not spend much time 

 One-step methods using optimization have high 
computational complexitycomputational complexity

 Two-step methods update combination function parameters 
and base learner parameters in an alternating manner
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MKL overview
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Summary

p.d.
kernel

RKHS

一一对应
（Theorem 1）

唯一确定
（Theorem 2） reproducing

kernel

拥有性质
reproducing

property

拥有性质
拥有性质
（传递性）
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Summary
• Key Properties of MKL

 Learning method

 Fixed rules 

 Heuristic approaches 

 Optimization approaches 

 Bayesian approaches 

 Boosting approaches
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Summary
• Key Properties of MKL

 Functional form

 Linear combination 

 Nonlinear combination 

 Data-dependent combination 
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Summary
• Key Properties of MKL

 Target function

 Similarity-based functions 

 Structural risk functions

 Bayesian functions 
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Summary
• Key Properties of MKL

 Training method

 One-step 

 Two-step 

 Base learner

 SVM

 KFDA 

 …
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Summary
• Key Properties of MKL

 Computational complexity 

 One-step 

 Two-step
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